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Abstract—Deep learning models are associated with various
deployment challenges. Inference of such models is typically
very compute-intensive and memory-intensive. In this paper, we
investigate the performance of deep learning models for a com-
puter vision application used in the automotive manufacturing
industry. This application has demanding requirements that are
characteristic of Big Data systems, including high volume and
high velocity. The application has to process a very large set
of high-definition images in real-time with appropriate accuracy
requirements using a deep learning-based object detection model.
Meeting the run time, accuracy, and resource requirements
require a careful consideration of the choice of model, model
parameters, hardware, and environmental support. In this paper,
we investigate the trade-offs of the most popular deep neu-
ral network-based object detection models on four hardware
platforms. We report the trade-offs of resource consumption,
run time, and accuracy for a realistic real-time application
environment.

I. INTRODUCTION AND MOTIVATING APPLICATION

Deep learning systems have become pervasive in the au-
tomotive domain [1]. A key example is visual inspection in
automotive manufacturing, which is conducted using camera-
based systems and different kinds of classifier, detection, and
segmentation methods. The data-intensive nature and compu-
tational complexity of these algorithms presents several chal-
lenges. Visual inspection requires the deployment of complex
algorithms, such as deep learning algorithms, and they may
need to be deployed on devices close to the data source and
devices to reduce latency and bandwidth restrictions, as well
as addressing privacy requirements. Edge and cloud computing
platforms are critical in this context for providing the ability to
act in real-time and also to support offline processing [2]. An-
other challenge for our industrial application is the deployment
of appropriate tools into the application environment. Finally,
model and hardware selection have a significant impact on the
runtime and accuracy in data-intensive settings.

The contribution of this paper is to provide a comprehen-
sive study of the trade-offs of runtime performance, memory
consumption, classifier accuracy, and hardware selection for
object detection in a fast streaming, high definition, image
workload application on state-of-the-art hardware platforms.
We analyze the trade-offs of popular object detection models

on the newest available types of GPU hardware platforms
that can be deployed on edge or cloud computing platforms.
We focus on designing a robust inference environment that is
capable of sustaining high throughput and low latency as well
as model accuracy that meets the application requirements.
The constraints of our execution environment impose hard
deadlines on the completion of the object detection methods.
For the purpose of this study, we utilize a set of pre-trained
object detectors, and report on test-time performance charac-
teristics: inference time, deployment time, memory footprint,
and hardware utilization. Other execution time performance
metrics for our application, such as network latency, are
studied separately.

The remainder of this paper describes: (i) the test bed
and synthetic workload; (ii) the model architectures under
consideration and the impacts to accuracy and runtime; (iii)
the experimental setup and target performance metrics; and
(iv) experimental results and analysis. We include a section
on related works and finish with conclusions.

II. SYSTEM TEST BED AND SYNTHETIC WORKLOAD

Complete automated inspection of vehicles based on com-
puter vision imposes requirements on the data collection
setup. The system must provide high resolution images that
allow inference of a large amount of information and must
process these under rigorous time and accuracy constraints. An
example processing task is to identify anomalous objects in the
images, such as a missing button or a handle that is misaligned.
We have designed a test bed and synthetic workload that allow
us to study the performance, memory, and accuracy trade-offs
for the detection of anomalous objects in the images.

For the visual inspection application, we assume that a
single pixel on the image is mapped to 0.1 mm of the inspected
area and that the minimal visible portion of the car on the
assembly line is approximately 1,300 mm, which can be
covered by 13,000 pixels of vertical height. This number of
pixels may be achieved by either using a single very high
resolution camera or with multiple lower resolution cameras
such that the whole height of the car is covered by several
images. Our application benefits from the latter solution for
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several reasons. First, it is more cost effective to use several
smaller resolution cameras than to use a single very high
resolution camera (at the 13,000 pixel level). Secondly, we
have better control over lens distortion at small distance to
an object, and a higher frame rate is possible using cameras
with a smaller resolution. In addition to these advantages, a
multiple camera setup enables much better insight into the
depth information for inspection of the geometry.

Fig. 1: System Architecture Diagram.

Given these parameters, we have designed a system that
includes a set of cameras in a vertical array that together
cover the vertical visible portion of the car. Fig. 1 illustrates
our system architecture. As a car moves through the assembly
line at a fixed rate, camera images are acquired and sent to
the image processing infrastructure. A software broker (e.g.,
Kafka) directs images from the cameras through the network
to one or more image processing edge or cloud nodes, each
of which can have zero or more GPU processing units. The
results of the object detection are available to a human analyst.
For real time processing, the results from a car must be
available before the next car reaches the inspection point in
the assembly line. Images and object detection results are also
stored in persistent storage for later analysis.

We have designed a synthetic workload that is representative
of the images that would be obtained from real cameras in
the car assembly application. Our design assumes that the
application includes five cameras with approximately 2,700
pixels of vertical resolution and 2,100 pixels of horizontal
resolution each. This resolution is the minimum required
for our automotive assembly application. We calculate that,

minimally, nineteen camera shots by the five cameras are
required for visual inspection of the whole car, for a total
of ninety-five images per car.

We process each image by dividing it into tiles with the size
matching the smallest native input size of the object detection
methods that we consider, which is 300 pixels by 300 pixels.
We note that different object detection models, described in the
next section, use different native image input sizes. However,
to keep the accuracy comparable across the different models,
we use the same input size of 300x300 and the same input
tiles for all testing of object detection methods. In this paper,
we do not include overlap between neighboring tiles, which
may affect the accuracy of the detection of small objects.

The synthetic workload is constructed from a collection of
images in which every image is composed of tiles of images
retrieved from the Common Objects in Context (COCO)
data set [3]. Thus, each “camera image” is a single image
composed of a set of tiles on a nine by seven grid, providing
a consistent number of sixty-three tiles per image. Each tile
is 300x300 pixels, creating images that are each 2700x2100
pixels, and ninety-five such images are acquired to provide
visual coverage of a whole car. A sample synthetic image used
for evaluation and performance testing is shown in Fig 2.

Fig. 2: The left side shows a sample synthetic image. Each
image is composed of sixty-three tiles. The complete visual
view of a car in the synthetic workload is represented by
ninety-five images. The right side is zoomed in on four of
the tiles and shows the objects detected.

III. MODEL ARCHITECTURE BACKGROUND

Traditionally, computer vision applications have required
complex feature engineering tasks to produce effective feature
sets for different kinds of object detection applications. Today,
deep learning techniques can be applied directly to raw images
without complex feature extraction algorithms. Many common
tasks such as object detection can be solved effectively using
out-of-the-box deep learning architectures. In our experimental
environment, which includes a set of fixed-location cameras,
all images are the same size and all models are tested on the
same images.
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In object detection, a computer vision algorithm tries
to detect different objects in an input image and draw a
rectangular-shaped bounding box that outlines the area of
each object. Object detection consists of two different tasks:
object classification and bounding box regression. An object
with its corresponding box is considered correct if it is both
correctly classified and its bounding box exceeds some level
of overlapping with manually labelled data, usually at least
50%.

One challenge in object detection is that objects of interest
may have different locations within the image and may have
different aspect ratios. In a naı̈ve approach, the number of
bounding boxes that must be considered is exponentially large
with respect to the size of the image. As a result, many
different object detection architectures have been proposed that
reduce the size of the search space for objects of interest or
optimize the search in different ways. These different object
detection architectures have different characteristics.

Some models are designed to achieve state-of-the-art perfor-
mance in accuracy. Several models aim to achieve reasonable
accuracy within limited time and computational resources.
There are efforts to build deep learning models for special
hardware systems, such as FPGAs, or for resource-limited
devices such as smartphones. There are multiple degrees of
freedom in object detection architectures that affect their
accuracy, run time, and resource utilization. The literature
provides many details about object detection architectures [4].
Here we list some important degrees of freedom:

1) Meta Architecture: The choice of meta-architecture can
have a significant impact on the accuracy and runtime of the
model. Meta-architectures in object detection models can be
categorized into either single stage or 2-stage models. In single
stage models, input images are passed through the networks
one time to produce predicted objects and their bounding
boxes. In 2-stage models, a first pass of the image produces
bounding box proposals and then the box proposals are fed
into the second stage to predict objects and recalculate the
bounding boxes. Single stage meta-architectures are used for
fast, low-latency applications, while 2-stage meta-architectures
are used for better accuracy but have longer run times.

We study variants of the single stage model, Single Shot
Detector (SSD) [5], including an implementation designed for
memory-constrained systems (SSDLite) [6]. We also study
variants of several 2-stage models: Region-based Convolu-
tional Neural Network (R-CNN) [7], Faster R-CNN [8], and
Region-based Fully Convolutional Networks (R-FCN) [9]. At
the time of this paper, Faster R-CNN is considered to be the
state-of-the-art meta-architecture in terms of accuracy in object
detection, but R-FCN produces comparable accuracy in several
common datasets [4].

2) Feature Extractor: At least six feature extractors are
reported in [4]. Feature extractors are usually image classifi-
cation networks that are pre-trained on some common dataset
first, and then are used to initialize the complete networks.
In our experiments, we study models with a few common
feature extractors, including MobileNet [10], Resnet [11], In-

ception [12], Inception-Resnet [13], and NAS [14]. MobileNet
is an efficient deep neural network that is able to produce
relatively light-weight networks while maintaining reasonable
performance [10]. Deep Residual Network (ResNet), Incep-
tion, and Neural Architecture Search network (NAS) all utilize
many layers or scales or combinations of scales to achieve
higher accuracy. The most accurate model we study uses
the NAS feature extractor with the Faster R-CNN meta-
architecture (Faster R-CNN NAS).

3) Other Features: A few other features often considered
in the selection of the model or its parameters: a) Feature
layers: These select which layer(s) of the feature extractor to
be used in the meta-architecture. Several papers select the
top-most, or deepest, convolutional layer, but other papers
aggregate multiple layers, even fully-connected layers; b) Box
proposals: Different original papers report a different number
of proposals, as well as how to select proposals, for example,
values from 10 to 300 for an image of 300x300 pixels may be
considered; c) Trained image size: Two models we consider,
R-FCN and Faster R-CNN are fixed at the shorter edge. SSD is
fixed at both edges; d) Stride in the feature extractor: Reports
show that stride is an important factor in the trade-off between
performance and running time; and, e) Data augmentation:
These are methods to transform images, such as rotation or
cropping, to make the models more robust.

The original papers typically report a single combination of
these options, with variants such as different image resolutions,
the numbers and positions of the candidate boxes, the layers
from which features are extracted and the number of layers.
In this evaluation, we focus on popular methods with different
combinations of meta-architectures and feature extractors that
have all been pre-trained on the COCO dataset.

IV. EXPERIMENTAL ENVIRONMENT

A. Deep Learning Framework and Object Detection Models

A number of deep learning frameworks appear in the
literature and are available for testing, including DeepX [15],
PyTorch [16], MXNet [17], and TensorFlow [18]. Of these,
we found at the time of our study that only TensorFlow is
complete and robust enough to support the range of object
detection models that we wish to evaluate.

TensorFlow is an open source machine learning framework
with a large user community that includes the support from
about fifty companies. Models in TensorFlow include official
models that are maintained and tested, and utilize the latest
stable TensorFlow API. The TensorFlow model repository also
includes research models that are contributed and maintained
by individual researchers. New models are continually being
added to the repository. We selected the twenty-four research
object detection models for use in TensorFlow that were
available at the time of the start of this study [18].

B. Hardware Devices

Although a number of low-cost technologies have been
promoted for use in edge computing, such as Raspberry PI and
mobile phones, our initial testing indicated that the very low
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cost platforms were not robust enough to support processing
of the high-definition images for our application. We test four
models of GPU processors for our application: Nvidia P100,
Nvidia V100 PCIe, Nvidia V100 SXM2, and Nvidia Jetson
TX2. We also provide results for CPU execution only.

1) Nvidia P100: Nvidia’s Tesla P100 (Pascal) architecture,
introduced in 2016, contains 3,584 CUDA cores. The card
for our tests uses a PCIe bus, has 12GB of RAM, memory
bandwidth of 732 GB/s, and a GPU maximum clock rate of
1.33 GHz.

2) Nvidia V100 PCIe: The Tesla V100 (Volta), introduced
in 2017, has 5,120 CUDA cores. The card is our tests has
16 GB RAM, memory bandwidth of 900 GB/s, and a GPU
maximum clock rate of 1.38 GHz.

In addition to the increased number of CUDA cores, an
advantage of the V100 over the P100 is the addition of 640
Tensor cores. A Tensor core uses a fused multiply add (FMA)
operation in which two half precision 4x4 matrices are multi-
plied together, and a half or single precision matrix is added
to the result. An FMA operation can be performed within
one GPU clock cycle. Some object detection models natively
utilize reduced precision in some layers of the algorithms,
which can improve execution time without affecting accuracy.

3) Nvidia V100 SXM2: Though similar to PCIe in architec-
ture and number of cores (5,120), Nvidia’s Tesla V100 SXM2
uses NVLink as the system interface. The card in our tests has
16 GB memory, memory bandwith of 900 GB/s, and a GPU
maximum clock rate of 1.53 GHz. It also has an interconnect
bandwidth of 300 GB/s, compared to the PCIe counterpart
which offers 32 GB/s.

4) Nvidia Jetson TX2: The Nvidia Jetson TX2 has a Pascal
GPU with 256 CUDA cores. Memory is shared with main
memory and is 8 GB with a bandwidth of 59.7 GB/s. The TX2,
along with prior edge devices TK1 and TX1, and the latest
edge device Xavier, are designed to run pre-trained models.
As such, this paper focuses on evaluating the less-resource
demanding MobileNet models on the TX2. We use TX2 in
Max-N power mode, where both dual-core Denver processor
and a quad-core ARM Cortex-A57 run at maximum clock
speed along with the GPU clock speed of 1.30 Ghz.

5) CPU-only execution: CPU-only execution only tests
were performed on a compute node with Intel Xeon Gold
6148 CPU at 2.40 GHz without the use of any GPU. Each
test runs on all forty cores of a single compute node.

C. Performance Metrics

There are many factors that can affect performance measure-
ments, such as the executions of other processes, the shared
utilization of memory bandwidth, or environmental tasks. We
set up a clean and isolated environment with no processes
that consume system resources other than required system
processes.

1) Inference Time: Inference time includes splitting the test
image into multiple tiles and making predictions from all sixty-
three tiles. A single blank tile is included to provide for sixty-
four tiles, so that the largest mini batch size is a power of

two. The mini batch size is a parameter to the models that
specifies the number of tiles loaded and processed at the same
time. Larger batch sizes can enable more efficient use of the
GPU memory and cores.

Inference time does not include loading images from per-
sistent storage devices, decoding images, or transforming
images into the data format required by the inference engines.
Inference time ends when the results of object detection are
calculated. We report in this paper the average inference time
over one or more runs of processing of ninety-five images
while utilizing a clean test environment.

2) GPU Memory Consumption: In the default configura-
tion, Tensorflow consumes all available GPU memory, mean-
ing that the memory utilization is nearly 100% during all run
times. Therefore, we examine the memory consumption with
TensorFlow configuration allow_growth=True in order
for the framework to start with the minimum required memory
and to allocate more memory when necessary. We define the
memory utilization as the amount of GPU memory allocated to
evaluate each process. Note that this definition is different from
Nvidia’s definition, which reports the percentage of maximum
memory bandwidth that is currently utilized at each sampling.
The total memory allocated on GPU by active context is
measured using ‘nvidia-smi’. The memory consumption is
reported for each model as the maximum amount of allocated
memory during each experiment. We sample the allocated
memory values with an interval of 0.01 second.

D. Model Accuracy

The common metric to measure accuracy in the computer
vision community is mAP (Mean Average Precision). The
mAP is a measure of the ratio of correctly defected objects
over the total number of objects detected among all images. A
higher mAP means that the model has identified more objects
correctly.

Most models have reported mAP accuracy in the Tensor-
Flow site. We additionally validated our test environment to
confirm the accuracy of the model output on models with
published mAP values. To evaluate our results, we use the
COCO metrics from the official COCO Python API [19].
These calculate the average precision over multiple Intersec-
tion Over Union (IOU) values ranging from 0.50 to 0.95 with
a stride of 0.05.

Note that the reported mAP results were calculated on
the COCO test data set, but the labels and annotations for
the COCO test data set are not available to the public. We
performed accuracy tests using the COCO validation data set.
Since we have calculated mAP values using a different data
set, the values are different, but the results show that the
relative accuracy of the models is the same with one exception.
A subset of the models was also hand inspected for accuracy.
The list of models, sorted by accuracy, is shown in Table I. The
model names shown in Table I give the meta-architectures and
feature extractors as previously described. Models are grouped
into five groups by mAP, as shown in Table I, to facilitate
comparative analysis.
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TABLE I: Models sorted by reported mAP with tested mAP
and grouped by mAP

mAP mAP mAP
Model Name Reported Tested Group
faster rcnn nas 43 57.7 Highest

faster rcnn incept resnet v2 atrous 37 45.2
mask rcnn incept resnet v2 atrous 36 45.6 High
ssd resnet50 v1 fpn 35 –

mask rcnn resnet101 atrous 33 41.5
ssd mobilenet v1 fpn 32 –
faster rcnn resnet101 32 40.3 Medium
rfcn resnet101 30 37.3
faster rcnn resnet50 30 34.5
mask rcnn resnet50 atrous 29 35.7

faster rcnn incept v2 28 31.1
mask rcnn incept v2 25 32.7 Low
ssd inception v2 24 30.9

ssdlite mobilenet v2 22 27.4
ssd mobilenet v2 22 –
ssd mobilenet v1 21 26.3 Lowest
ssd mobilenet v1 ppn 20 –
ssd mobilenet v1 0.75 depth 18 21.7

The models with mAP not reported on the TensorFlow site
are the “low proposal” models. These are expected to have
an mAP that is comparable to the corresponding non-low
proposal method. However, since we have not confirmed these
accuracies the models are not included in Table I. In four cases,
the reported mAP is from testing on a newer version of the
TensorFlow framework than our test bed and is not comparable
to our testing.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we discuss the experimental results. We
tested the full range of models and hardware choices. In a
few cases, not all results are shown on the charts for space
reasons. The results shown are representative of the range of
results and are the most likely combinations of models and
architecture to be selected for our application. Results for
hardware platforms P100, V100 PCIe, V100 SXM2, CPU-
only, and TX2 are shown.

A. Inference Time as a Function of Mini Batch Size

We measure the inference time as a function of the Ten-
sorFlow mini batch size for each platform. Mini batch size
varies as a choice of 1, 2, 4, 8, 16, 32, and 64. The batch size
of 64 loads all tiles in the image as a single batch. The size
of a mini batch indicates the size of the fourth dimension
of the input tensor supplied to the model’s computational
graphs (the three other dimensions are height, width, and color
channels). Larger batch sizes require larger memory to store
input tensors, intermediate representations, and output ten-
sors during computations. However, larger batch sizes reduce
the amount of communication between operations, thereby
reducing inference time. The inference time is reported in
seconds and is shown in log scale on most charts. Some
higher accuracy models have an out-of-memory error with

Fig. 3: Inference time as a function of batch size on P100

larger batch sizes and no result is shown in this case on the
chart.

Fig. 3 shows the inference time as a function of the mini
batch size for selected models on the P100 hardware. In
general, runtime decreases with larger batch sizes to about
a mini batch size of 8, where it tends to level off.

Note that Faster RCNN NAS runs out of memory with a
batch size of 4 and above on the P100 and on both V100
GPUs, but it is the most accurate model we tested. Some other
models with High or Medium accuracy also run out of memory
at higher batch sizes. The more accurate models build deeper
neural networks that take more memory so fewer batches can
fit into memory at a time.

The four “low proposal” models are also shown in Fig. 3,
but the accuracy of these is Not Available. Note that these low
proposal models have much faster run times than their non-
low proposal counterparts. Measuring the accuracy of these
models for our application is an area of future inquiry.

Fig. 4a and Fig. 4b show the inference time as a function
of the mini batch sizes for the V100 PCIe and V100 SXM2
platforms, respectively. Some similarities and differences can
be noted between execution on the P100 and execution on the
V100 platforms. The out-of-memory errors for some higher
accuracy models occurs at the same batch sizes tested on
all three platforms. However, the run times for all models
are faster on the V100 platforms than on the P100, and
are somewhat faster on the V100 SXM2 than on the V100
PCIe platform. These results are expected since the faster
memory bandwidth and clock rate and addition of tensor cores
gives the V100 platforms a significant advantage. The fastest
models we test are the four MobileNet models. The fastest
run time we measure, of all models and hardware choices, is
SSD MobileNet V2 with V100 SXM2 and a mini batch size
of 64. This model has a mean run time of 0.743 seconds to
process a single image.
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(a) Inference time as a function of batch size on V100 PCIe (b) Inference time as a function of batch size on V100 SXM2

Fig. 4

Fig. 5: Inference time as a function of batch size using CPU
only

Figure 5 shows the inference time as a function of the mini
batch sizes for CPU-only execution. The relative ranking of
models by run time is similar to the rankings by run time
on the GPU platforms. However, note the change of scale on
the y-axis. The run times for CPU only are in general much
higher for all models than on the GPU platforms. For example,
the best run time of Faster RCNN NAS using V100 SXM2
is around 32 seconds as compared to the run time on the
CPU-only of around 256 seconds, a factor of 8 times slower.
For real-time industrial applications, such as ours, selection of
hardware includes the ability of its performance to meet timing
requirements and, secondly, if the costs of using multiple
hardware platforms in parallel to meet all workload demands

Fig. 6: Inference time as a function of batch size using TX2

justify the use of the cheaper, slower platform. We study the
costs comparisons separately.

Fig. 6 shows the inference time as a function of the
mini batch sizes for TX2 execution. Most models do not
execute within our application run time constraints on the
TX2, and we only show results for the MobileNet models. The
SSD Mobilenet v1 FPN model runs out of memory for batch
sizes greater than one. The TX2 is designed to be inexpensive,
having less memory and other resources restrictions. The
execution is much slower for the tested models than on
the P100 and V100 platforms, though the platform is less
expensive and is useful for many application use cases.
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(a) Maximum GPU memory usage as a function of batch size
on P100

(b) Maximum GPU memory usage as a function of batch size
on V100 PCIe

Fig. 7

B. Memory Consumption as a Function of Mini Batch Size

We measure the GPU memory consumption as a function
of the TensorFlow mini batch size using the same parameters
as for measuring inference time. Memory consumption is
reported in MB for the GPU platforms. As before, higher
accuracy models have an out-of-memory error with larger
batch sizes and no result is shown in this case on the chart.

Fig. 7a shows the memory consumption as a function of
the mini batch size for selected models on the P100 hardware.
Fig. 7b shows the memory consumption as a function of
the mini batch size for selected models on the V100 PCIe
hardware. Memory consumption on the V100 SXM2 hardware
is the same as memory consumption on the V100 PCIe
hardware and is not shown for space reasons.

On both the P100 and V100 PCIe platforms the SSD models
have the smallest memory footprint and all batch sizes fit
into memory. Note that the SSD Mobilenet models, which
are shown in blue on the charts since they have the lowest
accuracy, use less memory on the V100 PCIe than they do on
the P100. On both platforms the SSD Incept V2 model uses
one of the lower amounts of memory and also has one of the
lowest run times along with a Medium level of accuracy. Most
Faster RCNN models run out of memory on the V100 PCIe
platform at a batch size of 32 or smaller.

In general, on both platforms, larger batch sizes require
more memory but the growth of the memory requirement is
not linear. Note that GPU memory on the P100 is 12GB but
the V100 PCIe has 16GB. More models run out of memory
at lower batch sizes on the P100 than on the V100 PCIe.

We find that the measurements on the P100 are in general
less stable than measurements on the V100 PCIe and the V100
SXM2. In this study we have not applied any optmizations to
the memory accesses or to the execution by threads within

the same warp beyond what is provided by the model codes
“out-of-the-box”. However, all models either use memory to
capacity for both the P100 and the V100 platforms , or show
an increase in memory usage for a batch size of 64 over the
smaller batch sizes. Applying optimizations of memory usage
for selected models is an item of future study.

We do not show results for memory usage for the TX2
since the GPU does not have its own memory on the TX2.
It shares the system RAM and is wired to memory controller
and generally consumes most of the system memory. We do
not break out those numbers in our charts.

C. Inference Time and Memory for Different GPU Platforms

In this section, we study the trade-offs of memory usage
and interference time for three different GPU platforms. For
this part of the study with each model, we select the batch
size that provides the fastest execution time and report the
memory usage for that model. Fig. 8 graphs the inference
time and memory usage for the models executed on the P100,
V100 PCIe, and V100 SXM2 platforms. The reported values
are labeled with an ID for each model. Fig. 9 lists the models
along with the ID that is used in Fig. 8. The values list the best
inference time over all the tested batch sizes and its relative
memory usage for each model over every hardware.

The figures show that in general, bigger models with larger
inference times achieve better accuracies on both systems.
Faster RCNN NAS is the model that both achieves highest
accuracy and has the longest run time. Also, because of its
complex structure, we can only fit a maximum mini batch
size of two tiles into the V100 memory.

The fastest models are based on the SSD meta-architecture,
but these models have a lower accuracy of 50% of the best
model in the best case. With that loss in accuracy, these models
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Fig. 8: Best inference time and max memory consumption of models on three GPU devices. The labels used in this figure are shown in
Fig. 9. For each point shown the mini batch size that gives the best run time for that model is shown in parentheses. For example, C(64)
shown in the lower left of the left figure is the ssd mobilenet v1 ppn model run with a mini batch size of 64, which is the fastest for that
model on the P100. The left figure shows results for P100, the middle figure shows results for V100 PCIe, and the right figure shows results
for V100 SXM2.

Fig. 9: List of models and IDs used in Fig. 8.

can process each test image 30 times faster than the slowest
models in this study.

Most SSD based models take less than 4 seconds to process
a test image on average. SSD Mobilenet v1 is the model that
achieves smallest memory consumption, even with all tiles
processed as a single mini batch. This model is extremely
memory efficient, though it is about 3 times slower than the
fastest model.

Faster RCNN models, in general, achieve better accuracy
than SSD based models, but with longer run times. Many of
these achieve their best inference time with a mini batch size
of 16. The most accurate Faster RCNN model takes nearly 60
seconds to process an image, while the fastest one takes only
2 seconds.

For some models, running on the V100 PCIe is not only
faster than the P100 but also requires less memory. Some SSD
Lite models can run with less than 4 GB of memory on V100
GPUs, while the same models achieve highest performances
at nearly 8 GB on P100. These values are very important in a
scenario that an application needs to load multiple models into
GPU in the same time. If a model can properly work with less
than 4 GB on V100, then it is possible to load four instances
of that model to process data in parallel. The P100 has only
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Fig. 10: Inference times on V100 PCIe and V100 SXM2
platforms for representative models from each of the five mAP
groups.

has 12 GB of RAM, therefore, we can at most load only one
instance of the most lightweight models at a time.

When comparing the two variants of V100 GPUs, PCIe
and SXM2, it can be seen that the SXM2 variant produces
faster results in all tested models. In fact, having higher clock
speeds and faster internal connections between CPU and GPU
is an advantage the SXM2 variant. Note that the differences
in processing times between the V100 PCIe and V100 SXM2
are relatively small in comparison to the differences between
the P100 and V100 GPUs.

D. Discussion of Real-Time Application Constraints

One important aspect of our application is to select a
model with the best accuracy possible within the application
run time requirements. Fig. 10 can help in the selection of
possible models. Fig. 10 shows the run times on the two
V100 platforms for selected models from each of the five
mAP groups, from highest mAP to the lowest mAP. Fig. 10
shows that the run times are significantly smaller for models
with less accuracy. Conversely, if higher accuracy is required
by the application then higher run times for model inference
are required. For example, with a run time requirement of 1
second, the best accuracy we can achieve for the calculation
of an individual model is in the “Lowest” range. However,
with a run time requirement of 4 seconds, the best accuracy
we can achieve for the calculation of an individual model is a
higher value in the “Medium” range. A run time of about 32
seconds for the calculation of an individual model is required
to obtain the “Highest” accuracy.

VI. RELATED WORKS

MLPerf [20] is a benchmark suite consisting of seven bench-
marks including two benchmarks for object detection models.
The focus is however on the training aspects of deep learning

models and does not cover inference. Dawnbench [21] is a
predecessor of MLPerf covering both training and inference.
In contrast to older deep learning benchmarks it uses the time-
to-accuracy as its primary metric and does not solely focus
on accuracy. DeepBench [22] focuses on lower level aspects
and hardware, in particular linear algebra level operations
required for doing a forward pass on a neural network. As the
inference performance also depends on these operations, there
is some relevance, but other overheads, such as I/O, framework
performance, are not covered by DeepBench. In contrast to the
approaches referenced above, this work focuses on specific
image inference workloads of a real world application. Our
analysis covers further important aspects of the inference
pipeline, such as framework overheads, model sizes, and
memory footprints.

Huang et al. [4] investigates the inference performance of
different object detectors. The authors identify three meta-
architectures with several feature extractors and evaluate the
trade-off between accuracy and inference time. In contrast to
this work, it solely focuses on a generic application use case
and does not cover other aspects important for production
deployment, such as the memory consumption of the models.

VII. CONCLUSIONS AND FUTURE WORK

Edge inference is a critical component of every deep learn-
ing systems enabling us to process large amounts of data with
low latencies while preserving privacy. The deployment of
deep learning algorithms in production requires the careful
understanding of various trade-offs in particular related to the
computation and memory requirements of the models and their
provided accuracies.

In this paper, we investigate the trade-offs to guide the
design of computer vision system for automated inspection.
Our results provide to us a selection of appropriate edge
hardware. Not surprisingly, models designed for embedded
inference, such as MobileNet, are particularly well-suited for
edge deployment. However, the ability to deploy also server-
scale GPUs on the edge enables us to also utilize high-quality
models.

We expect that the requirements for edge inference will
significantly increase in the near future as tools will increas-
ingly run complex ensembles of models concurrently (e.g. the
detection of a multitude types of issues simultaneously). The
provided characteristics will be instrumental for designing and
sizing the inference workload as the system evolves.

In the future, we plan to augment edge with cloud resources
using scalable streaming services [23]. This will enable us to
exploit a higher degree of parallelism by utilizing multiple
nodes and GPUs. For this purpose, it is necessary to carefully
evaluate the bandwidth and latency needs of the applications
against the capabilities of the infrastructure.

The usage of cloud-based resources enables the support of
active learning capabilities and the ability to train models
that utilize multiple edge cameras as input. We envision
various lines of investigation for integrating edge/cloud-based
systems: (i) on a infrastructure-level edge resource must be
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integrated with cloud resources via streaming. The utilization
of specialized cloud hardware, such as Google’s TPUs [24]
or Microsoft’s FPGA [25] requires special consideration both
during deployment and runtime; (ii) Multiple model ver-
sions potentially trained on different datasets deployed on
the edge and/or the cloud to magnify the performance trade-
offs described in this paper; (iii) To support active learning
approaches, such as federated learning [26], to provide the
means to utilize decentralized training resources on the edge,
and to combine the results into a global model.
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